British Physics Olympiad Competition

BPhO Answer Booklet
February 2024

Name	
School	
Account Number	

Instructions

Time: 3 hours (approximately 45 minutes per question).
Questions: All four questions should be attempted.
Marks: The four questions carry similar marks.
Solutions: Answers and calculations are to be written on loose paper or in examination booklets. Students should ensure their name and school is clearly written on all answer sheets.
A new question should be started on a new page.
Pages must be numbered.
Instructions: A standard formula booklet with standard physical constants should be supplied. To accommodate students sitting the paper at different times, please do not discuss any aspect of the paper on the internet until 8am Monday $26^{\text {th }}$ February.

Calculators: Any standard calculator may be used, but calculators must not have symbolic algebra capability. If they are programmable, then they must be cleared or used in "exam mode".

Clarity: Solutions must be written legibly, in black pen (the papers are photocopied), and working down the page. Scribble will defnitely not be marked and overall clarity is an important aspect of this competition paper.

Mechanics

Equations of motion

Impulse
Work
Centripetal acce
Hydrostatic pre
Electricity
Current

Power

$$
I=\frac{\Delta Q}{\Delta t}
$$

$$
P=V I
$$

Resistance

Electric current	$I=n A v q$
Resistivity	$R=\frac{\rho \ell}{A}$

Resistors in series
Resistors in parallel

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots
$$

AC voltage

SHM

Acceleration

$$
a=-\omega^{2} x
$$

Displacement
Period of a spring

Radioactivity

Radioactive decay
$N=N_{0} \exp (-\lambda t)$

Decay constant

$$
x=A \sin (\omega t+\phi)
$$

$$
\kappa=\kappa_{1}+\kappa_{2}+\ldots
$$

$$
V=V_{0} \sin \omega t
$$

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Thermal
Heat transfer

$$
Q=m c \Delta T \quad \text { and } \quad Q=m L
$$

Thermodynamics

$$
\Delta Q=\Delta U+\Delta W
$$

Waves

Refraction

Double slit fringes

Doppler effect
de Broglie wavelength

Photon energy

Gases

Gas law

Work done by a gas

$$
p V=n R T
$$

$$
\Delta W=p \Delta V
$$

Pressure of an ideal gas

$$
p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle
$$

Energy of a molecule

$$
\frac{1}{2} m c_{\mathrm{RMS}}^{2}=\frac{3}{2} k T
$$

Fields

Field and potential
Gravitational potential

$$
E=-\frac{\Delta V}{\Delta x}
$$

Gravitational field
Electric potential
Electric field $V_{g}=-\frac{G M}{r}$
$E_{g}=\frac{G M}{r^{2}}$

$$
V=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

Capacitors in series

$$
\begin{aligned}
n_{1} \sin \theta_{1} & =n_{2} \sin \theta_{2} \\
w & =\frac{\lambda d}{s} \\
f_{o} & =\frac{f_{s} c}{c \pm v_{s}} \\
\lambda & =\frac{h}{p} \\
E & =h f
\end{aligned}
$$

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots
$$

Capacitors in parallel

$$
C=C_{1}+C_{2}+\ldots
$$

Energy of a capacitor

$$
C=\frac{Q}{V}
$$

$$
E=\frac{1}{2} Q V
$$

Magnetic force

$$
F=I \ell B \text { and } F=q v B
$$

EM induction
Capacitance

$$
\varepsilon=-N \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

Important Constants

Constant	Symbol	Value
Speed of light in free space	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Acceleration of free fall at Earth's surface	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
Mass of an electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Mass of a neutron	m_{n}	$1.67 \times 10^{-27} \mathrm{~kg}$
Mass of a proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Radius of a nucleon	r_{0}	$1.2 \times 10^{-15} \mathrm{~m}$
Planck constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~S}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
Boltzmann constant	k	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Molar gas constant	R	$8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Specific heat capacity of water	$c_{\text {w }}$	$4.19 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
Mass of the Sun	$M_{\text {S }}$	$1.99 \times 10^{30} \mathrm{~kg}$
Mass of the Earth	$M_{\text {E }}$	$5.97 \times 10^{24} \mathrm{~kg}$
Radius of the Earth	$R_{\text {E }}$	$6.38 \times 10^{6} \mathrm{~m}$

BPhO Answer Booklet

